Sparsity Regularization for classification of large dimensional data

نویسندگان

  • Nand Sharma
  • Prathamesh Verlekar
  • Rehab Ashary
  • Majdi Khaled
  • Sui Zhiquan
چکیده

Feature selection has evolved to be a very important step in several machine learning paradigms. Especially in the domains of bio-informatics and text classification which involve data of high dimensions, feature selection can help in drastically reducing the feature space. In cases where it is difficult or infeasible to obtain sufficient training examples, feature selection helps overcome the curse of dimensionality which in turn helps improve performance of the classification algorithm. The focus of our research are five embedded feature selection methods which use the ridge regression, or use Lasso regression, and those which combine the two with the goal of simultaneously performing variable selection and grouping correlated variables.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3D Inversion of Magnetic Data through Wavelet based Regularization Method

This study deals with the 3D recovering of magnetic susceptibility model by incorporating the sparsity-based constraints in the inversion algorithm. For this purpose, the area under prospect was divided into a large number of rectangular prisms in a mesh with unknown susceptibilities. Tikhonov cost functions with two sparsity functions were used to recover the smooth parts as well as the sharp ...

متن کامل

Learning Compressible Models

Regularization is a principled way to control model complexity, prevent overfitting, and incorporate ancillary information into the learning process. As a convex relaxation of l0norm, l1-norm regularization is popular for learning in high-dimensional spaces, where a fundamental assumption is the sparsity of model parameters. However, model sparsity can be restrictive and not necessarily the mos...

متن کامل

Nonparametric regression and classification with joint sparsity constraints

We propose new families of models and algorithms for high-dimensional nonparametric learning with joint sparsity constraints. Our approach is based on a regularization method that enforces common sparsity patterns across different function components in a nonparametric additive model. The algorithms employ a coordinate descent approach that is based on a functional soft-thresholding operator. T...

متن کامل

Direct Sparsity Optimization Based Feature Selection for Multi-Class Classification

A novel sparsity optimization method is proposed to select features for multi-class classification problems by directly optimizing a l2,p -norm ( 0 < p ≤ 1 ) based sparsity function subject to data-fitting inequality constraints to obtain large between-class margins. The direct sparse optimization method circumvents the empirical tuning of regularization parameters in existing feature selection...

متن کامل

Large-scale Inversion of Magnetic Data Using Golub-Kahan Bidiagonalization with Truncated Generalized Cross Validation for Regularization Parameter Estimation

In this paper a fast method for large-scale sparse inversion of magnetic data is considered. The L1-norm stabilizer is used to generate models with sharp and distinct interfaces. To deal with the non-linearity introduced by the L1-norm, a model-space iteratively reweighted least squares algorithm is used. The original model matrix is factorized using the Golub-Kahan bidiagonalization that proje...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1712.01975  شماره 

صفحات  -

تاریخ انتشار 2017